Multilevel Monte Carlo Finite Element Methods for Stochastic Elliptic Variational Inequalities
نویسندگان
چکیده
Multi-Level Monte-Carlo Finite Element (MLMC–FE) methods for the solution of stochastic elliptic variational inequalities are introduced, analyzed, and numerically investigated. Under suitable assumptions on the random diffusion coefficient, the random forcing function, and the deterministic obstacle, we prove existence and uniqueness of solutions of “mean-square” and “pathwise” formulations. Suitable regularity results for deterministic, elliptic obstacle problems lead to uniform pathwise error bounds, providing optimal-order error estimates of the statistical error and upper bounds for the corresponding computational cost for classical Monte–Carlo and novel MLMC–FE methods. Utilizing suitable multigrid solvers for the occurring sample problems, in two space dimensions MLMC–FE methods then provide numerical approximations of the expectation of the random solution with the same order of efficiency as for a corresponding deterministic problem, up to logarithmic terms. Our theoretical findings are illustrated by numerical experiments.
منابع مشابه
Adaptive Multilevel Monte Carlo Methods for Stochastic Variational Inequalities
While multilevel Monte Carlo (MLMC) methods for the numerical approximation of partial differential equations with uncertain coefficients enjoy great popularity, combinations with spatial adaptivity seem to be rare. We present an adaptive MLMC finite element approach based on deterministic adaptive mesh refinement for the arising ”pathwise” problems and outline a convergence theory in terms of ...
متن کاملMultilevel Monte Carlo Methods for Stochastic Elliptic Multiscale PDEs
In this paper Monte Carlo Finite Element (MC FE) approximations for elliptic homogenization problems with random coefficients which oscillate on n ∈ N a-priori known, separated length scales are considered. The convergence of multilevel MC FE (MLMC FE) discretizations is analyzed. In particular, it is considered that the multilevel FE discretization resolves the finest physical length scale, bu...
متن کاملFinite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods
We consider a finite element approximation of elliptic partial differential equations with random coefficients. Such equations arise, for example, in uncertainty quantification in subsurface flow modelling. Models for random coefficients frequently used in these applications, such as log-normal random fields with exponential covariance, have only very limited spatial regularity, and lead to var...
متن کاملGalerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations
We describe and analyze two numerical methods for a linear elliptic problem with stochastic coefficients and homogeneous Dirichlet boundary conditions. Here the aim of the computations is to approximate statistical moments of the solution, and, in particular, we give a priori error estimates for the computation of the expected value of the solution. The first method generates independent identi...
متن کاملInterior Methods For a Class of Elliptic Variational Inequalities
We consider the application of primal-dual interior methods to the optimization of systems arising in the finite-element discretization of a class of elliptic variational inequalities. These problems lead to very large (possibly non-convex) optimization problems with upper and lower bound constraints. When interior methods are applied to the discretized problem, the resulting linear systems hav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 52 شماره
صفحات -
تاریخ انتشار 2014